

TIG Rod, stainless, high-alloyed, special applications

Classifications

Characteristics and typical fields of application

TIG rod of W Z 22 17 8 4 N L type. The fully austenitic weld metal is paramagnetic, seawater resistant and guarantees high ductility at low temperatures. For joining and cladding of non-magnetic CrNiMo(Mn,N) steel and cast grades like for seawater desalination plants, centrifuges, bleaching plants and in special shipbuilding.

Rel. magnetic permeability $\mu_r = 1,01$ (at 8000 A/m). Service temperature max. 350°C.

Base materials

1.3948 X4CrNiMnMoN19-13-8, 1.3951 X2CrNiMoN22-15, 1.3952 X2CrNiMoN18-14-3, 1.3957 X2CrNiMoNbN21-15, 1.3964 X2CrNiMnMoNNb21-16-5-3, 1.4569 GX2CrNiMoNbN21-15-4-3, 1.5662 X8X9 UNS \$20910

Typical analysis

Typical analysis							
	С	Si	Mn	Cr	Ni	Мо	Ν
wt%	0.03	0.7	7.5	22	17.5	3.6	0.24

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R_m	Elongation A ($L_0 = 5d_0$)	Impact energy ISO-V KV J		
	MPa	MPa	%	-196°C	20°C	
u	480 (≥ 430)	690 (≥ 640)	35 (≥ 30)	(≥ 32)	130 (≥ 70)	
structure of the development of the structure of the stru						

u untreated, as-welded – shielding gas Ar

Operating data

oporating add					
	Polarity	DC-	Dimension mm		
	Shielding gas	11	2.0 × 1000		
	(EN ISO 14175)		2.4 × 1000		
	Rod marking	+ WZ 22 17 8 4 NL 1.3954			

Suggested heat input is max. 1.5 kJ/mm and interpass temperature max. 100°C. Preheating and post-weld heat treatment generally not needed. Keep the arc short and grind out root pass end craters.

Approvals

DNV, WIWEB, CE